Lecture 5: Labour Economics and Wage-Setting Theory

Spring 2019

Lars Calmfors

Literature: Chapter 7 Cahuc-Carcillo-Zylberberg: 435-445

Topics

- Weakly efficient bargaining
- Strongly efficient bargaining
- Wage dispersion
- Bargaining over working time
- , QMGHVIDQGRXWGHV]

Efficient contracts

- Bargaining over the wage only and letting employers determine employment (right to manage) is not efficient.
- An efficient solution can be found by bargaining over both the wage and employment.
$\operatorname{Max}[R(L)-w L]^{1-\gamma}[\nu(w)-\nu(\bar{w})]^{\gamma} L^{\gamma}$
w, L
s.t. $\quad 0 \leq L \leq N$ and $w \geq \bar{w}$

Interior solution

$$
\begin{equation*}
(1-\gamma) \frac{R^{\prime}(L)-w}{R(L)-w L}+\frac{\gamma}{L}=0 \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
-(1-\gamma) \frac{L}{R(L)-w L}+\frac{\gamma \nu^{\prime}(w)}{\nu(w)-\nu(\bar{w})}=0 \tag{II}
\end{equation*}
$$

Eliminate γ between the two equations to get

$$
\begin{equation*}
w-R^{\prime}(L)=\frac{\nu(w)-\nu(\bar{w})}{\nu^{\prime}(w)} \tag{III}
\end{equation*}
$$

This is the equation of a contract curve (Pareto-efficient combinations of w, L) connecting tangency points of indifference and isoprofit curves.

The same equation would be obtained by maximising

$$
L[\nu(w)-\nu(\bar{w})] \quad \text { s.t. } \quad \pi=\bar{\pi}
$$

Differentiation of the contract curve equation gives:

$$
\frac{d w}{d L}=\frac{R^{\prime \prime}(L)}{\nu^{\prime \prime}(w)\left[w-R^{\prime}(L)\right]}
$$

$\gamma=0 \Rightarrow R^{\prime}(L)=w$ according to (I)
$R^{\prime}(L)=w \Rightarrow \nu(w)=\nu(\bar{w})$ and $w=\bar{w}$ according to (III)
Hence the contract curve starts on the labour demand schedule at $w=\bar{w}$

If $w>R^{\prime}(L)$ and workers are risk averse, i.e.
$\nu^{\prime \prime}<0$, then $d w / d L>0$ for $w>R^{\prime}(L)$.
$\gamma=0$ gives the competitive level of employment $L=L(\bar{w})$
With $\gamma>0$, the union uses its bargaining power to raise both the wage and employment over the competitive levels.
If workers are risk-neutral, then $\nu^{\prime \prime}=0$ and $\frac{d w}{d L} \rightarrow \infty$. Hence the contract curve is vertical. Employment is at the competitive level.

Overemployment if workers are risk-averse - "weak efficiency" as

 $R^{\prime}(L)<\bar{w}$ due to employment being higher than L_{c} defined by $R^{\prime}\left(L_{c}\right)=\bar{w}$

Figure 7.6
The model of bargaining over wages and employment.

Strongly efficient contracts

- Efficiency gain for union if utility of employed and unemployed are equated
- Incentive to bargain with firm over unemployment benefit paid by the firm

Union objective
$L \nu(w)+(N-L) \nu(b+\bar{w})$

Firm profit

$\pi=R(L)-w L-(N-L) b$
$\operatorname{Max} L \nu(w)+(N-L) \nu(b+\bar{w})$
w, b

$$
\text { s.t. } \quad \pi=\pi_{0}
$$

$\operatorname{Max}_{w, b} L \nu(w)+(N-L) \nu(b+\bar{w})+\lambda\left[R(L)-w L-(N-L) b-\pi_{0}\right]$

FOC
$L \nu^{\prime}(w)-\lambda L=0$
$(N-L) \nu^{\prime}(b+\bar{w})-\lambda(N-L)=0$
$\nu^{\prime}(w)=\lambda$
$\nu^{\prime}(b+\bar{w})=\lambda$

Hence:

$$
\begin{aligned}
& \nu^{\prime}(w)=\nu^{\prime}(b+\bar{w}) \\
& w=b+\bar{w}
\end{aligned}
$$

- Pareto efficiency requires a wage for the employed that is equal to the income as unemployed.
- The firm pays a benefit \boldsymbol{b} to all unemployed.
- It pays a wage $\bar{w}+b$ to the employed.
- Employment does not matter to the union, since members are insured against unemployment.

The bargaining problem

$$
\underset{b}{\operatorname{Max}}\left[R\left(L^{*}\right)-\bar{w} L^{*}-b N\right]^{1-\gamma}[\nu(\bar{w}+b)-\nu(\bar{w})]^{\gamma}
$$

FOC:

$$
\begin{gathered}
\frac{\nu(\bar{w}+b)-\nu(\bar{w})}{\nu^{\prime}(\bar{w}+b)}=\frac{\gamma}{1-\gamma} \frac{\left[R\left(L^{*}\right)-\bar{w} L^{*}-b N\right]}{N} \\
\text { with } \quad w=\bar{w}+b \\
R^{\prime}\left(L^{*}\right)=\bar{w}
\end{gathered}
$$

- Employment equals the competitive level
- Union members appropriate a share of the firm's profit without this having negative effects on employment

Diagrammatical illustration

Indifference curves:

$$
\begin{aligned}
v_{s} & =\nu(w) \\
\nu_{1} d w & =0 \\
\frac{\nu_{1} d w}{d L} & =0 \\
\frac{d w}{d L} & =0
\end{aligned}
$$

The indifference curves are horizontal lines.

Isoprofit curve

$$
\begin{gathered}
\pi=R(L)-\bar{w} L-b N=R(L)-\bar{w} L-N(w-\bar{w}) \\
d \pi=0=R^{\prime}(L) d L-\bar{w} d L-N d w \\
\frac{d w}{d L}=\frac{R^{\prime}(L)-\bar{w}}{N}
\end{gathered}
$$

- Tangency points between isoprofit curves and indifference curves give a vertical contract curve (at the competitive level of employment)
- Bargaining over wages, employment and unemployment benefits from firms is strongly efficient.

Figure 7.7
The strongly efficient bargaining model.

Collective bargaining and wage dispersion

- Heterogeneous workers
- Collective bargaining reduces wage dispersion
- Two types of workers, indexed by $\boldsymbol{i}=1,2$
- Revenue of the firm $=R\left(L_{1}, L_{2}\right)$
- Type - $\mathbf{1}$ workers are more productive with a higher reservation wage $\bar{w}_{1}>\bar{w}_{2}$
- $\boldsymbol{N}_{\boldsymbol{i}}$ workers of type \boldsymbol{i} in the firm's labour pool
- The union utility function

$$
v_{s}=\sum_{i=1}^{2}\left\{L_{i} u\left(N_{i}\right)+\left(N_{i}-L_{i}\right) v\left(w_{i}^{-}+b\right)\right\} \quad L_{i} \leq N_{i}
$$

- Strongly efficient bargaining over employment, wages and unemployment benefits
- Optimal contract implies $w_{i}=\bar{w}_{i}+b_{i}$

Bargaining problem

$\underset{b_{1}, b_{2}, L_{1}, L_{2}}{\operatorname{Max}}\left[R\left(L_{1}, L_{2}\right)-\sum_{i=1}^{2}\left(\bar{w}_{i} L_{i}+b_{i} N_{i}\right)\right]^{1-\gamma}\left[\sum_{i=1}^{2} N_{i}\left\{\nu\left(\bar{w}_{i}+b_{i}\right)-\nu\left(\bar{w}_{i}\right)\right\}\right]^{\gamma}$
s.t. $\quad 0 \leq L_{i} \leq N_{i} \quad i=1,2$

FOCs

(11) $\frac{\partial R\left(L_{1}, L_{2}\right)}{\partial L_{1}}=\bar{w}_{i}$

- Equation (11): Productive efficiency, i.e. the marginal productivity of each type of worker equals the reservation wage. This implies the competitive level of employment.
- Equation (12): RHS is independent of i. Hence the same wage for the two types of labour.
- Wage equality follows from the assumption of a utilitarian union and identical preferences.

$$
\frac{N_{1}}{N_{1}+N_{2}} \nu\left(w_{1}\right)+\frac{N_{2}}{N_{1}+N_{2}} \nu\left(w_{2}\right) \leq \nu\left[\frac{N_{1}}{N_{1}+N_{2}} w_{1}+\frac{N_{2}}{N_{1}+N_{2}} w_{2}\right]
$$

Because of concavity the union is better off with a wage
$\frac{N_{1}}{N_{1}+N_{2}} w_{1}+\frac{N_{2}}{N_{1}+N_{2}} w_{2}$ for everyone than with separate wages w_{1} and w_{2}.

$$
U_{2}>U_{1}
$$

Two-stage bargaining over employment (Manning 1987)
Stage 1: Bargaining over the wage
Stage 2: Bargaining over employment
Different bargaining strengths in the two negotiations

Bargaining over employment (given the wage)
$\operatorname{Max}_{L}[R(L)-w L]^{1-\gamma_{L}}[\nu(w)-\nu(\bar{w})]^{\gamma_{L}} L^{\gamma_{L}} \quad$ s.t. $0 \leq L \leq N$
The solution gives $L=L\left(\gamma_{L}, \bar{w}, w\right)$

Bargaining over the wage (takes the outcome of second-stage bargaining over employment into account)

$$
\operatorname{Max}_{w}[R(L)-w L]^{1-\gamma}[\nu(w)-\nu(\bar{w})]^{\gamma} L^{\gamma}
$$

$$
\text { s.t. } L=\widehat{L}\left(\gamma_{L}, \bar{w}, w\right) \text { and } \quad w \geq \bar{w}
$$

Different cases

- $\gamma_{L}=0$ and $\gamma>0$ gives the right-to-manage model
- $\gamma_{L}=\gamma$ gives (weakly) efficient bargain model
- Otherwise solution on neither labour-demand schedule nor contract curve

Considerations

- Efficient bargaining is complex
- Wage bargaining precedes employment bargaining
- Wage bargaining is often at more centralised level
- Strongly efficient bargaining is improbable because of moral hazard problems: unemployed being fully insured will not search effectively for jobs
- argument for partial insurance
- individual firm (sector) offering full insurance would be swamped by labour inflow
- One does not find many examples of contracts with unemployment benefits paid by firms
- Unclear empirical results on right-to-manage model and (weakly efficient) bargaining

Bargaining over hours

- Real-world bargaining appears often to be about both wages and working time
$\Omega=$ wage income
$T=$ time allocation
$H=$ hours worked
$\Omega=w H$
Utility function of a worker is $v(\Omega, H)$
$e(H)=$ productivity of a worker
$L=$ number of workers

Revenue of the firm
$R[e(H) L]=[e(H) L]^{\alpha} / \alpha \quad \alpha \in[0,1]$
$\eta_{H}^{e}=H e^{\prime}(H) / e(H)>0$ is the elasticity of worker productivity w.r.t. hours.
$e(H) /(H)=$ the productivity per hour. It increases with the number of hours if $\eta_{H}^{e}>1$.

- Bargaining about the hourly wage and hours only

Union utility

$$
V_{s}=\ell[\nu(\Omega, T-H)]+(1-\ell) \nu(\bar{w}, T) \quad \ell=\operatorname{Min}(1, \mathrm{~L} / \mathrm{N})
$$

Firm profit

$$
\begin{equation*}
\pi=\frac{1}{\alpha}[e(H) L]^{a}-\Omega L \tag{24}
\end{equation*}
$$

Right-to-manage assumption
Firm determines employment from profit maximisation. w and H or equivalently Ω and H are taken as given.

Set $\partial \pi / \partial L=0$ and solve for L :
$L(\Omega, H)=[e(H)]^{\alpha /(1-\alpha)} \Omega^{1 /(\alpha-1)}$

If $L(\Omega, H)<N$, we can plug (25) into profit equation (24).
$\pi(\Omega, H)=\left(\frac{1-\alpha}{\alpha}\right)\left[\frac{e(H)}{\Omega}\right]^{\alpha /(1-\alpha)}$

Nash bargaining solution

If no agreement:
Employee gets $\nu(\bar{W}, T)$
Firm gets zero profit

$$
\operatorname{Max}_{\Omega, H}\left[\frac{L(\Omega, H)}{N}\right]^{\gamma}[\nu(\Omega, T-H)-\nu(\bar{w}, T)]^{\gamma}[\pi(\Omega, H)]
$$

s.t. $L(\Omega, H) \leq N$ and $H \leq \bar{H}$
\bar{H} is legal constraint on hours (maximum hours allowed by legislation).

Interior solution

Take logs and differentiate w.r.t. Ω and H.
FOCs

$$
\begin{align*}
& \frac{\gamma \nu_{1}(\Omega, T-H)}{\nu(\Omega, T-H)-\nu(\bar{w}, T)}=\frac{\alpha(1-\gamma)+\gamma}{(1-\alpha) \Omega} \tag{26}\\
& \frac{\gamma \nu_{2}(\Omega, T-H)}{\nu(\Omega, T-H)-\nu(\bar{w}, T)}=\frac{\alpha}{(1-\alpha)} \frac{e^{\prime}(H)}{e(H)} \tag{27}
\end{align*}
$$

Divide (26) by (27):

$$
\begin{aligned}
& \frac{\nu_{1}(\Omega, T-H)}{\nu_{2}(\Omega, T-H)}=\frac{[\alpha(1-\gamma)+\gamma]}{(1-\alpha) \Omega} \cdot \frac{(1-\alpha)}{\alpha} \cdot \frac{e(H)}{e^{\prime}(H)}= \\
& =\frac{[\alpha(1-\gamma)+\gamma]}{\alpha} \cdot \frac{e(H)}{e^{\prime}(H) \cdot H} \cdot \frac{H}{\Omega}=\frac{H}{\Omega} \frac{[\alpha(1-\gamma)+\gamma]}{\alpha \eta_{H}^{e}} \\
& \eta_{H}^{e}=H e^{\prime}(H) / e(H)
\end{aligned}
$$

Equation (28) defines the MRS between income and leisure as a function of the wage $w=\Omega / H$ and the elasticity of employee productivity w.r.t. H, η_{h}^{e}.

Assume Cobb-Douglas utility function:
$\nu(\Omega, T-H)=(\Omega)^{\mu}(T-H)^{1-\mu} \quad \mu \in(0,1)$
Then:
$\nu_{1}=\mu \Omega^{\mu-1}(T-H)^{1-\mu}$
$\nu_{2}=(1-\mu)(T-H)^{-\mu} \Omega^{\mu}$
$\frac{\nu_{1}}{\nu_{2}}=\frac{\mu}{1-\mu} \Omega^{-1}(T-H)=\frac{\mu}{1-\mu} \frac{(T-H)}{\Omega}$

Assume that $\boldsymbol{e}(\mathbf{H})=\boldsymbol{H}$, then
$e^{\prime}(H)=1$ and $\eta_{H}^{e}=e^{\prime}(H) \cdot H / e(H)=1$.
(28) then simplifies to:

$$
\frac{\mu}{1-\mu} \frac{(T-H)}{\Omega}=\frac{H}{\Omega}\left[\frac{\alpha(1-\gamma)+\gamma}{\alpha}\right]
$$

$$
\begin{equation*}
H^{*}=\frac{\mu \alpha}{(1-\mu)[\gamma+\alpha(1-\gamma)]+\mu \alpha}_{T}^{T} \tag{29A}
\end{equation*}
$$

Optimal number of hours

- is increasing in μ (the importance of income relative to leisure)
- is decreasing in union bargaining power γ
- unions want low working time to get leisure and more workers employed
- explanation of work sharing: reduction in hours to boost employment

Legal maximum of hours $\bar{H}<H^{*}$

Negotiated wage is then given by (26) with $H=\bar{H}$
With Cobb-Douglas preferences one obtains:

$$
\begin{equation*}
\Omega^{\mu}(T-\bar{H})^{1-\mu}=\frac{\gamma(1-\alpha)+\alpha}{\gamma(1-\mu)(1-\alpha)+\alpha} \nu(\bar{w}, T) \tag{A}
\end{equation*}
$$

RHS of (A) is a constant. Hence:

$$
\begin{aligned}
& \Omega^{\mu}(T-\bar{H})^{1-\mu}=\mathbf{c o n s t a n t} \\
& \mu \ln \Omega+(1-\mu) \ln (T-\bar{H})=\mathrm{constant}
\end{aligned}
$$

Differentiate w.r.t. $\boldsymbol{d} \boldsymbol{l n} H$

$$
\begin{aligned}
& \mu \cdot \frac{d \ln \Omega}{d \ln \bar{H}}+(1-\mu) \frac{d \ln (T-\bar{H})}{d \ell n \bar{H}}=0 \\
& \mu \cdot \frac{d \ln \Omega}{d \ln \bar{H}}+(1-\mu) \frac{d \ln (T-\bar{H})}{d \bar{H}} \cdot \frac{d \bar{H}}{d \ell n \bar{H}}=0 \\
& \mu \cdot \frac{d \ln \Omega}{d \ln \bar{H}}+(1-\mu) \cdot \frac{(-1)}{T-\bar{H}} \cdot \bar{H}=0 \\
& \frac{d \ln \Omega}{d \ell n \bar{H}}=\eta_{h}^{\Omega}=\frac{\bar{H}(1-\mu)}{(T-\bar{H}) \cdot \mu}
\end{aligned}
$$

- The elasticity of wage income w.r.t. hours, η_{h}^{Ω}, is positive.
- Hence wage income falls if hours fall.
- It falls more if hours are long to begin with.

$$
\begin{equation*}
L(\Omega, H)=[e(H)]^{\alpha /(1-\alpha)} \Omega^{1 /(\alpha-1)} \tag{25}
\end{equation*}
$$

Assume again $e(H)=H$

$$
\begin{equation*}
L(\Omega, H)=H^{\alpha /(1-\alpha)} \Omega^{1 / \alpha-1} \tag{B}
\end{equation*}
$$

- We want to know what happens to employment L if binding legal maximum \bar{H} is reduced.
- direct effect from change in \bar{H}
- indirect effect from induced change in wage income Ω.

Take logs of (B):
$\ln L=\frac{\alpha}{1-\alpha} \ln \bar{H}+\frac{1}{\alpha-1} \ln \Omega$

Differentiate w.r.t. $d \ell n \bar{H}$
$\frac{d \ln L}{d \ell n H}=\frac{\alpha}{1-\alpha}+\frac{1}{\alpha-1} \frac{d \ln \Omega}{d \ell n \bar{H}}$

We use:
$\frac{d \ln \Omega}{d \ln \bar{H}}=\frac{\bar{H}(1-\mu)}{(T-\bar{H}) \cdot \mu}$
$\frac{d \ell n L}{d \ell n \bar{H}}=\frac{\alpha}{1-\alpha}+\frac{1}{\alpha-1} \cdot \frac{\bar{H}(1-\mu)}{(T-\bar{H}) \cdot \mu}$
$\frac{d \ln L}{d \ln \bar{H}}<0$ if $\frac{\alpha}{1-\alpha}+\frac{1}{\alpha-1} \cdot \frac{\bar{H}(1-\mu)}{(T-\bar{H}) \cdot \mu}<0$

This is equivalent to $\bar{H}>\hat{H}$

$$
\hat{H}=\frac{\mu \alpha}{(1-\mu)+\mu \alpha} T
$$

Interpretation

- A reduction in working time raises employment only if $\bar{H}>\hat{H}$.
- From (29A) we have that \hat{H} is optimal hours for unions.

$$
\begin{equation*}
H^{*}=\frac{\mu \alpha}{(1-\mu)[\gamma+\alpha(1-\gamma)]+\mu \alpha} T \tag{29A}
\end{equation*}
$$

$\gamma=1 \Rightarrow$

$$
H^{*}=\frac{\mu \alpha}{(1-\mu)+\mu \alpha} T
$$

- A reduction in \bar{H} increases employment only down to the point where H reaches the trade union optimum.
- Further reductions lower employment.

Figure 7.9
The impact of a reduction in the number of hours worked. The graph on the top corresponds to a value $\gamma=0.1$ of bargaining power and the one on the bottom to $\gamma=0.9$. The number of hours worked is given on the horizontal axis and stops at the negotiated number, H^{*}, which has a value of 0.463 (on the top) and 0.394 (on the bottom), knowing that the time allocation $T=1$. The ratio between actual employment and its value for H^{*} is given on the vertical axis.

Insiders and outsiders

- Unions negotiate on behalf of insiders (the already employed those with a strong affiliation to the labour market)
- Unions do not negotiate on behalf of outsiders (the unemployed in general or the long-term unemployed)

An insider-outsider model

- L_{O} insiders
- The firm decides on how many insiders $L_{I} \leq L_{O}$ it wants to retain.
- It also decides on how many outsiders L_{E} it wants to hire.
- Revenue function $R\left(L_{I}+L_{E}\right)$
- The firm's profit: $\pi=R\left(L_{I}+L_{E}\right)-w\left(L_{I}+L_{E}\right)$
- Employment of insiders, L_{I}, and of outsiders, L_{E}, is found by maximising profits s. t. $L_{I} \leq L_{O}$ and $L_{E} \geq 0$.
- Define w_{o} by $R^{\prime}\left(L_{0}\right)=w_{0}$.
- Define \tilde{L} as the employment level such that $\boldsymbol{R}^{\prime}(\tilde{L})=w$, where w is the current wage.

Labour demand

$$
\begin{aligned}
& L_{I}=\tilde{L} \text { and } L_{E}=0 \text { if } w \geq w_{O} \\
& L_{I}=L_{O} \text { and } L_{E}=\tilde{L}-L_{O} \text { if } w \leq w_{O}
\end{aligned}
$$

If $w>w_{o}$ we have $L_{I}=\tilde{L}<L_{o}$, so some insiders are fired.

Wage bargaining

$V_{I}=$ expected utility of an insider
$V_{I}=\ell \nu(w)+(1-\ell) \nu(\bar{w}) \quad \ell=\operatorname{Min}\left(1, \tilde{L} / L_{\mathrm{o}}\right)$
$\bar{w}=$ the reservation wage
$\operatorname{Max}[\pi(w)]^{1-\gamma}\{\ell[\nu(w)-\nu(\bar{w})]\}^{\gamma}$
with $\pi(w)=R(\tilde{L})-w \tilde{L}$

- Let w_{1} be the solution when $\ell=\tilde{L} / L_{o}$ (interior solution with some unemployed insiders).
- The solution is the same as in the standard right-to-manage model but with $L_{0}=N$.

$$
\begin{equation*}
\frac{\nu\left(w_{1}\right)-\nu(\bar{w})}{w \nu^{\prime}\left(w_{1}\right)}=\frac{\gamma}{\gamma \eta_{w}^{L}+(1-\gamma) \eta_{w}^{\pi}} \tag{10}
\end{equation*}
$$

Solution with $\ell=1$

- Set $\eta_{w}^{L}=0$ in (10); employment of insiders cannot increase

$$
\frac{\nu\left(w_{2}\right)-\nu(\bar{w})}{w_{2} \nu^{\prime}\left(w_{2}\right)}=\frac{\gamma}{(1-\gamma) \eta_{w}^{\pi}}
$$

Different solutions

$B_{1}=$ Nash bargaining product when $\tilde{L}>L_{0}$,
i.e. some employed outsiders
$B_{2}=$ Nash bargaining product when $\tilde{L}<L_{0}$,
i.e. some unemployed insiders

We have:

$$
\frac{\partial B_{1}}{\partial w}>\frac{\partial B_{2}}{\partial w}
$$

Larger gain from wage increase if only outsiders lose their jobs than if also insiders do.

Second-order conditions for a maximum

$$
\begin{aligned}
& \frac{\partial^{2} B_{1}}{\partial w^{2}}=\frac{\partial\left(\partial B_{1} / \partial w\right)}{\partial w}<0 \\
& \frac{\partial^{2} B_{2}}{\partial w^{2}}=\frac{\partial\left(\partial B_{2} / \partial w\right)}{\partial w}<0
\end{aligned}
$$

(1) Interior solution with $w \leq w_{0}$ and $\tilde{L} \geq L_{0}$

$$
\frac{\partial B_{1}}{\partial w}=0 \quad \frac{\partial B_{2}}{\partial w}<0
$$

(2) Corner solution with $w=w_{0}$ and $\tilde{L}=L_{0}$

$$
\frac{\partial B_{1}}{\partial w}>0 \quad \frac{\partial B_{2}}{\partial w}<0
$$

(3) Interior solution with $w \geq w_{0}$ and $\tilde{L} \leq L_{0}$

$$
\frac{\partial B_{1}}{\partial w}>0 \quad \frac{\partial B_{2}}{\partial w}=0
$$

Figure 7.8
Wage and employment in the insiders/outsiders model.

Conclusions

- A fall in the number of insiders results in an unchanged wage or in an increase in the wage
- Explanation of the persistence of unemployment
- No incentive to reduce the wage as the union does not care about the unemployed
- Empirical research has had problems finding that a reduction in lagged employment has a positive effect on the wage.

